3.1212 \(\int \frac{x^{13}}{\sqrt [4]{a-b x^4}} \, dx\)

Optimal. Leaf size=133 \[ -\frac{4 a^2 x^2 \left (a-b x^4\right )^{3/4}}{39 b^3}+\frac{8 a^{7/2} \sqrt [4]{1-\frac{b x^4}{a}} E\left (\left .\frac{1}{2} \sin ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )\right |2\right )}{39 b^{7/2} \sqrt [4]{a-b x^4}}-\frac{10 a x^6 \left (a-b x^4\right )^{3/4}}{117 b^2}-\frac{x^{10} \left (a-b x^4\right )^{3/4}}{13 b} \]

[Out]

(-4*a^2*x^2*(a - b*x^4)^(3/4))/(39*b^3) - (10*a*x^6*(a - b*x^4)^(3/4))/(117*b^2) - (x^10*(a - b*x^4)^(3/4))/(1
3*b) + (8*a^(7/2)*(1 - (b*x^4)/a)^(1/4)*EllipticE[ArcSin[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2])/(39*b^(7/2)*(a - b*x^4)
^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.0846476, antiderivative size = 133, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {275, 321, 229, 228} \[ -\frac{4 a^2 x^2 \left (a-b x^4\right )^{3/4}}{39 b^3}+\frac{8 a^{7/2} \sqrt [4]{1-\frac{b x^4}{a}} E\left (\left .\frac{1}{2} \sin ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )\right |2\right )}{39 b^{7/2} \sqrt [4]{a-b x^4}}-\frac{10 a x^6 \left (a-b x^4\right )^{3/4}}{117 b^2}-\frac{x^{10} \left (a-b x^4\right )^{3/4}}{13 b} \]

Antiderivative was successfully verified.

[In]

Int[x^13/(a - b*x^4)^(1/4),x]

[Out]

(-4*a^2*x^2*(a - b*x^4)^(3/4))/(39*b^3) - (10*a*x^6*(a - b*x^4)^(3/4))/(117*b^2) - (x^10*(a - b*x^4)^(3/4))/(1
3*b) + (8*a^(7/2)*(1 - (b*x^4)/a)^(1/4)*EllipticE[ArcSin[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2])/(39*b^(7/2)*(a - b*x^4)
^(1/4))

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 229

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Dist[(1 + (b*x^2)/a)^(1/4)/(a + b*x^2)^(1/4), Int[1/(1 + (b*x^2
)/a)^(1/4), x], x] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 228

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[(2*EllipticE[(1*ArcSin[Rt[-(b/a), 2]*x])/2, 2])/(a^(1/4)*R
t[-(b/a), 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b/a]

Rubi steps

\begin{align*} \int \frac{x^{13}}{\sqrt [4]{a-b x^4}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x^6}{\sqrt [4]{a-b x^2}} \, dx,x,x^2\right )\\ &=-\frac{x^{10} \left (a-b x^4\right )^{3/4}}{13 b}+\frac{(5 a) \operatorname{Subst}\left (\int \frac{x^4}{\sqrt [4]{a-b x^2}} \, dx,x,x^2\right )}{13 b}\\ &=-\frac{10 a x^6 \left (a-b x^4\right )^{3/4}}{117 b^2}-\frac{x^{10} \left (a-b x^4\right )^{3/4}}{13 b}+\frac{\left (10 a^2\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt [4]{a-b x^2}} \, dx,x,x^2\right )}{39 b^2}\\ &=-\frac{4 a^2 x^2 \left (a-b x^4\right )^{3/4}}{39 b^3}-\frac{10 a x^6 \left (a-b x^4\right )^{3/4}}{117 b^2}-\frac{x^{10} \left (a-b x^4\right )^{3/4}}{13 b}+\frac{\left (4 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt [4]{a-b x^2}} \, dx,x,x^2\right )}{39 b^3}\\ &=-\frac{4 a^2 x^2 \left (a-b x^4\right )^{3/4}}{39 b^3}-\frac{10 a x^6 \left (a-b x^4\right )^{3/4}}{117 b^2}-\frac{x^{10} \left (a-b x^4\right )^{3/4}}{13 b}+\frac{\left (4 a^3 \sqrt [4]{1-\frac{b x^4}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt [4]{1-\frac{b x^2}{a}}} \, dx,x,x^2\right )}{39 b^3 \sqrt [4]{a-b x^4}}\\ &=-\frac{4 a^2 x^2 \left (a-b x^4\right )^{3/4}}{39 b^3}-\frac{10 a x^6 \left (a-b x^4\right )^{3/4}}{117 b^2}-\frac{x^{10} \left (a-b x^4\right )^{3/4}}{13 b}+\frac{8 a^{7/2} \sqrt [4]{1-\frac{b x^4}{a}} E\left (\left .\frac{1}{2} \sin ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )\right |2\right )}{39 b^{7/2} \sqrt [4]{a-b x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0313156, size = 91, normalized size = 0.68 \[ \frac{x^2 \left (12 a^3 \sqrt [4]{1-\frac{b x^4}{a}} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{3}{2};\frac{b x^4}{a}\right )+2 a^2 b x^4-12 a^3+a b^2 x^8+9 b^3 x^{12}\right )}{117 b^3 \sqrt [4]{a-b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^13/(a - b*x^4)^(1/4),x]

[Out]

(x^2*(-12*a^3 + 2*a^2*b*x^4 + a*b^2*x^8 + 9*b^3*x^12 + 12*a^3*(1 - (b*x^4)/a)^(1/4)*Hypergeometric2F1[1/4, 1/2
, 3/2, (b*x^4)/a]))/(117*b^3*(a - b*x^4)^(1/4))

________________________________________________________________________________________

Maple [F]  time = 0.032, size = 0, normalized size = 0. \begin{align*} \int{{x}^{13}{\frac{1}{\sqrt [4]{-b{x}^{4}+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^13/(-b*x^4+a)^(1/4),x)

[Out]

int(x^13/(-b*x^4+a)^(1/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{13}}{{\left (-b x^{4} + a\right )}^{\frac{1}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^13/(-b*x^4+a)^(1/4),x, algorithm="maxima")

[Out]

integrate(x^13/(-b*x^4 + a)^(1/4), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (-b x^{4} + a\right )}^{\frac{3}{4}} x^{13}}{b x^{4} - a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^13/(-b*x^4+a)^(1/4),x, algorithm="fricas")

[Out]

integral(-(-b*x^4 + a)^(3/4)*x^13/(b*x^4 - a), x)

________________________________________________________________________________________

Sympy [C]  time = 2.93064, size = 29, normalized size = 0.22 \begin{align*} \frac{x^{14}{{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{7}{2} \\ \frac{9}{2} \end{matrix}\middle |{\frac{b x^{4} e^{2 i \pi }}{a}} \right )}}{14 \sqrt [4]{a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**13/(-b*x**4+a)**(1/4),x)

[Out]

x**14*hyper((1/4, 7/2), (9/2,), b*x**4*exp_polar(2*I*pi)/a)/(14*a**(1/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{13}}{{\left (-b x^{4} + a\right )}^{\frac{1}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^13/(-b*x^4+a)^(1/4),x, algorithm="giac")

[Out]

integrate(x^13/(-b*x^4 + a)^(1/4), x)